
Fast, Small-Space Algorithms for Approximate Histogram
Maintenance

[Extended Abstract]

Anna C. Gilbert
AT&T Labs—Research

agilbert@research.att.com

Yannis Kotidis
AT&T Labs—Research

kotidis@research.att.com

Sudipto Guha
CIS,University of Pennsylvania

sudipto@cis.upenn.edu

S. Muthukrishnan
AT&T Labs—Research

muthu@research.att.com

Piotr Indyk
Lab. Computer Science, MIT

indyk@theory.lcs.mit.edu

Martin J. Strauss
AT&T Labs—Research

mstrauss@research.att.com

ABSTRACT
A vector A of length N is de�ned implicitly, via a stream
of updates of the form \add 5 to A3." We give a sketching
algorithm, that constructs a small sketch from the stream of
updates, and a reconstruction algorithm, that produces a B-
bucket piecewise-constant representation (histogram) H for
A from the sketch, such that kA�Hk � (1+�) kA�Hoptk,
where the error kA�Hk is either `1 (absolute) or `2 (root-
mean-square) error. The time to process a single update,
time to reconstruct the histogram, and size of the sketch
are each bounded by poly(B; log(N); log kAk ; 1=�). Our re-
sult is obtained in two steps. First we obtain what we call
a robust histogram approximation for A, a histogram such
that adding a small number of buckets does not help improve
the representation quality signi�cantly. From the robust his-
togram, we cull a histogram of desired accruacy and B buck-
ets in the second step. This technique also provides similar
results for Haar wavelet representations, under `2 error. Our
results have applications in summarizing data distributions
fast and succinctly even in distributed settings.

1. INTRODUCTION
Histograms are succinct and space-e�cient approxima-

tions of distributions of numerical values. One often visual-
izes histograms as a sequence of vertical bars whose widths
are equal but whose heights vary from bar to bar. More
generally, histograms are of varying width as well; that is,
they are general piecewise-constant approximations of data
distributions. Formally, suppose A is a function (or a \dis-
tribution" or a \signal") on N points given byA[0 � � �N). A
B-bucket histogram H of A is de�ned by a partition of the
domain [0 � � �N) into B intervals (buckets) Bi, as well as by
B spline parameters bi. For any x 2 [0 � � �N), the value of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’02, May 19-21, 2002, Montreal, Quebec, Canada.
Copyright 2002 ACM 1-58113-495-9/02/0005 ...$5.00.

H(x) is equal to the bi such that x 2 Bi. Since B is typically
(much) smaller than N , this is a lossy representation. The
quantity kA�Hkp, where k�kp is the lp norm, is the error
in approximating A by a B-bucket histogram H. Typically
the norms of interest are l1 (average absolute error) or l2
(root mean square error).
The branch of mathematics called Approximation The-

ory deals with �nding representations for functions. His-
tograms are amongst the simplest class of representations,
and perhaps the most fundamental. They are the easiest to
visualize; statistical analyses frequently involve histograms.
Histograms also �nd many applications in computer sys-
tems. For example, most commercial database engines keep
a histogram of the various value distributions in a database
for optimizing query executions and for approximately pro-
cessing queries; image processing systems handle color his-
tograms extensively, etc.
Finally, an emerging context we describe in some detail

is one of distributed databases on large scale networks such
as the Internet. Routers generate a data stream of logs of
the tra�c that goes over the various incident links. For real
time tra�c control, operators must know tra�c patterns at
various routers at any moment. However, it is prohibitively
bandwidth-expensive to transfer data streams of tra�c logs
from routers to central monitoring stations on a continuous
basis. Hence, histograms may be constructed at routers to
summarize the tra�c distribution; they will be compact,
and, while not being precise, they may su�ce for most trend-
related analyses. Building histograms at network routers
thus saves the distribution cost of transmitting raw data.
Our focus here is on maintaining a histogram represen-

tation for dynamic data distributions. Our study is mainly
motivated by applications of histograms where data changes
rapidly.

� Many commercial databases have large number of trans-
actions, e.g., stock transactions etc. during a work
day. Transactions change the underlying data distri-
bution (e.g., volume of stock sold per ticker symbol,
every minute). The outstanding challenge in using his-
tograms in such transactional databases is to maintain
them during these rapid changes.

� In the context of data streams comprising tra�c logs,
data distributions change even faster: each IP packet

389

that passes through a router changes the data distri-
bution (e.g., the number of bytes from each IP address
passing through that router) rapidly. In order to cap-
ture these tra�c distributions using histograms, we in-
herently need mechanisms to build histograms as the
data distribution evolves rapidly.

In all the above contexts, the basic problem is to �nd a
\good" histogram for a given data distribution. For applica-
tions involving the visualization of the histogram, �nding a
good histogram is an art. But in a formal setting, one seeks
optimal histograms, that is, ones that minimize kA�Hk1
or kA�Hk2. An optimal (static) histogram can be found in
a straightforward way using dynamic programming, taking
time O(N2B) time using O(NB) space.
Formally, the problem of dynamic histogram maintenance

is as follows. We are given parameter B and are to maintain
a function A0 = A[0 � � �N). (1) Suppose the j'th operation
is update(i; x); then the operation is to add x to Aj�1[i],
where x is an arbitrary integer parameter (in particular, x
may be negative). In the resulting Aj , Aj [i] = Aj�1[i] + x
and Aj is identical to Aj�1 otherwise. (2) Suppose the
j'th operation is Hist. Then the goal is to output a B-
bucket histogram H for Aj�1 such that kAj�1 �Hk1 (or
kAj�1 �Hk2) is (nearly) minimized. As is standard, we
must design a data structure that supports these operations
with little time (here, polylogarithmic in N). Additionally,
we must use working space that is sublinear N (again, poly-
logarithmic in N). This is a departure from standard dy-
namic data structures literature, and it is motivated by ap-
plications we cited above. For example, memory is at pre-
mium in routers and hence only a few hundred bytes may
be allocated for representing data distributions even though
n may be 232 or higher; likewise, transactional databases al-
locate only a few hundred bytes for maintaining histograms
on value distributions even of product codes where n may
be 232 or larger. Hence, B is likely to be very small; for the
same reasons, the work space for maintaining histograms
must also be very small with respect to N .

1.1 Our Results
Our main result is the �rst known algorithm that simul-

taneously breaks both the linear time and linear space bot-
tlenecks for the problem of dynamic maintenance of his-
tograms. We present

� An algorithm supporting the Update and Hist oper-
ations in space and time poly(B; 1=�; log kAk ; logN).
The reconstruction of the best B bucket histogram for
Hist query produces one with error at most (1 + �)
times the optimal error in `1 or `2 norm

1.

� The result is nearly best possible, since any algorithm
for this problem uses
(B log(N)) space, and, further,
any algorithm whose dependence on N is polylogarith-
mic uses 1=(� logO(1)(N)) space.

The algorithm supports not only updates of individual
values of A[i], but in fact enables any linear operation on

1Our algorithms succeed on each Hist operation with user-
speci�ed probability � over the algorithm's random choices,
at a cost of the factor log(1=�) in the time and space. To
make the algorithm succeed with probability 1� �0 on all of
t Hist operations, use � = �0=t for cost factor log(t=�0).

one or two signals/distributions. This feature allows us to
address the issues of distributed data collection, that arise
in the context of large scale networks. In particular, we
can combine the distribution information from many di�er-
ent sources (e.g., routers) and compute the histogram ap-
proximation for the cummulative data. Our techniques also
give similar results for Haar wavelet representations, but this
holds under `2 error only.

1.2 Previous Work
The problem of histogram construction and maintenance

is fundamental to databases and therefore has been stud-
ied extensively in the past decade. Di�erent optimization
versions of histograms have been formulated: see [16] for
an overview. Our problem here is known as the V -optimal
histogram in the database literature, and is the one sought
after. Heuristic algorithms for building and maintaining his-
tograms have been proposed using sampling [5], wavelets [13],
discrete cosine transforms [12], local adjustments [1], etc.
None of these approaches gives any provable bounds.
The static version of our histogram problem allows no

updates. For this problem, an O(N2B) time dynamic pro-
gramming algorithm appears in [11]. In addition, [11] also
presented a O((N +B logN) log kAk)-time algorithm using
at most 3B buckets and having a guaranteed error at most
3 times the optimal histogram with B buckets. This was
improved to 1 + � approximation using B buckets in [8] in
time O(N + (B��1 logN)3).
In the data stream model, let us �rst consider the aggre-

gated, sorted model; here, (static) A[i]'s are scanned in in-
creasing order of i's. The result in [11] uses O(B+log kAk2)
space and provides same (3; 3) guarantee as above. The algo-
rithm of [9] provided a (1+ �)-approximation preserving the
number of buckets, using O(B2 logN) space and taking time
O(NB2 logN). In [6], the authors provided a O(B+ logN)
space, exact algorithm for �nding a B-term wavelet rep-
resentation; this translates into a histogram using at most
B logN buckets, preserving the error.
The most general data stream model (which we use in

this paper) is known as the cash register model [6]. Few
algorithms are known for computing on the cash register
model, examples include estimating stream norms [2, 3, 10].
Computing histograms or other representations is signi�-
cantly more involved than merely estimating the norm be-
cause the identi�cation of the relevant coe�cients is very
crucially needed in our algorithm. Besides [6, 7, 17] that we
discuss next, no other nontrivial results are known.
One of the most closely-related works is [6], which gives an

algorithm for our dynamic problem (in the wavelet formu-
lation), using poly(B; 1=�; logN) space. Our present work
improves [6] in construction time, error bound, and general-
ity of the technique. The algorithm presented here improves
a construction time of Npoly(B; log(N); log kAk ; 1=�) to
poly(B; log(N); log kAk ; 1=�), improves an additive error from
� kAk to �jOPT j (i.e., provides, for the �rst time, relative
error with the factor (1 + �)), and can handle the non-
orthogonal norm `1 as well as `2.
Finally, papers [7, 17] present experimental evaluations

and extensions of histogram construction algorithms. Pa-
per [7] presents experimental evaluation of heuristics for con-
structing wavelet representations motivated by the results in
this paper. Similarly, paper [17] presents experimental re-
sults for heuristics derived from the \bare bones" version of

390

our algorithm (the resulting algorithms have running times
polynomial in N). Both papers represent our ongoing work
to explore the application of the ideas in this paper in a
practical context.

1.3 Technical Overview
A dyadic interval is of the form [i2j ; : : : ; (i + 1)2j), for

integers i and j. A technical primitive we use in our algo-
rithms is a synopsis data structure for an array that supports
updates, identi�cation of dyadic intervals with large projec-
tions, estimation of the best spline parameters, and estima-
tion of the norm. Typically a synopsis data structure [4] is
de�ned to be of small space, but we will additionally require
them to support all necessary computations in small time as
well. By \small", we mean a value at most poly(B; logN; 1

�
).

The technical crux in building this synopsis data structure
is that we will be required to sum various ranges of random
variables and perform \group testing" on sets of coe�cients
to identify the large projections. This is described in Sec-
tion 2.
Using this synopsis data structure, our algorithm proceeds

by repeatedly adding to our (partial) histogram the dyadic
interval which reduces the error of approximation the most.
We run this process till we achieve a stable respresentation
of the signal with poly(B; logN; 1

�
) buckets. This is what we

term as a robust approximation of the signal which abstracts
the notion that we have extracted the possible information in
any B-bucket approximation of the original signal. This pro-
cedure in itself (extended to a pair of dyadic intervals) pro-
duces a B-term wavelet representation (see Section 3) which
minimizes the representation error. To maintain the conti-
nuity in presentation, we �rst present the wavelet result, and
subsequently the robust approximation in Section 4.
Finally, in Section 5, we show how to use a robust approx-

imation Hr to produce a B-bucket approximation H. At a
high level, we use a dynamic programming argument intro-
duced in [11] for construction of optimal histograms, mod-
i�ed for desired approximations in [9, 8]. But all of these
assume knowledge of exact or approximate value of the er-
ror of a histogram when projected on a subinterval. This
is not possible to have in a sketch setting since the sketch
is constructed for the entire interval. The sketch may sug-
gest the subintervals with large projection (which we use in
previous section) but cannot evaluate norms projected to
subintervals. For this reason we have to use a technique of
creating a set of histograms, that allows us to add inter-
vals left-to-right and circumvents the necessity of knowing
projections. The argument is similar to hybridization, where
we construct our �nal output with a series of changes, which
add an interval at a time. If the error introduced by any of
these intervals were signi�cantly more than the error in the
optimal solution, restricted to the interval in question, we
would contradict the robustness we assumed.

1.4 Notation
A is a vector (or \signal") of length N . All uppercase bold

types represent vectors. For an interval I � [0; N), we write
�(A; I) to denote the projection of the vector on interval
I, i.e., equals A on I and zero elsewhere. The vector �I
equals 1 on I and 0 elsewhere. The set of vectors �I form
a (highly redundant) basis for histograms. We use `1 norm
except where noted. All results also hold under `2 norm.

2. ARRAY SKETCHES
In this section, we give a data structure for a dynamic

array A, called an array sketch, that supports generalized
updates to A and several fundamental queries about A.
The data structure is parametrized by �s; �, andN . In this

section, \small" means of value at most poly(log(N); 1=�; 1=�s),
\compact" means of small size, and \quickly" means using
a small amount of time. For an understood signal A, let
cIopt denote the c that minimizes kA� c�Ik.

De�nition 1. A (�s; �; N)-array sketch of a signal A is a
compact synopsis data structure that represents an array of
length N and quickly supports the following operations:

� Update. Given a number c and an interval I, we can
compute an array sketch for A+ c�I .

� Identify. We can return a compact list that contains
all dyadic intervals I such thatA� cIopt�I � (1 � �) kAk but contains no interval

I such that
A� cIopt�I > (1� �=2) kAk.

� Estimate norms. Return kAks such that

kAk � kAks � (1 + �s) kAk :

� Estimate parameters. Given an interval I, return a
value c such that kA� c�Ik � (1 + �s)

A� cIopt�I.
These operations will be used, in later sections, to build a

near-best histogram representation for A. We will proceed,
roughly, as follows. Given a signal A, �nd I and c such
that kA� c�Ik is sign�cantly less than kAk, then update
the signal by A A� c�I and recurse. Thus we will need
support for generalized interval updates (which may also be
of independent interest), but support for �nding a near-best
histogram need not be supported directly since it can be
built from the more fundamental operations.
An array sketch for signal A under `p norm will take the

following form. As in [10], choose a random vector V ac-
cording to a symmetric p-stable distribution. (The 1-stable
distibution family is the Cauchy and the 2-stable distribu-
tion family is the Gaussian; we want distributions symmetric
about zero.) For some set S � [0; N) to be speci�ed below,
a sub-basic sketch of A is h�(A; S);Vi. Keeping V �xed,
choose other sets S (speci�ed below) and repeat the process,
to get a basic sketch. Finally, generate several independent
basic sketches for independent copies of V, to drive down
the distortion and probability of error. An array sketch com-
prises the several basic sketches.
We �rst give a technical lemma about p-stable distri-

butions, then specify the sets S and show that the fully-
speci�ed data structure satis�es the above.

De�nition 2. A random variable X is Cauchy-distributed
with width w, X � C(0; w), if the density of X is fw(x) =
w
�

1
x2+w2 . The width of a Gaussian-distributed random vari-

able is its standard deviation.

Lemma 1. For p = 1 or 2, let X and Y be p-stably dis-
tributed random variables with widths wX and wY , respec-
tively. Let Z = X + Y . Then, for each number z, one can
sample from a distribution indistinguishable from Xj(Z =
z), to k digits of precision, in time (number of operations

times precision) (k log(wX) log(wY) log(z))
O(1).

391

Proof. We consider the Cauchy case. The conditional
density of X is

f(x) =
fwX (x)fwY (z � x)

fwX+wY (z)

=
wXwY

�(wX + wY)
�

(wX +wY)
2 + z2

(w2
X + x2)(w2

Y + (z � x)2)
:

This is a rational function of x whose coe�cients are polyno-
mially bounded in wX ; wY , and z. Since f is a rational func-
tion of x, the inde�nite integral F (x) of f(x) can be com-
puted explicitly. By [10], it thus su�ces to pick r 2 [0; 1] uni-
formly at random to (k log(wX) log(wY) log(z))

O(1) bits of
precision and solve F (x) = r for x by the bisection method.
It is unlikely that F (x) requires more than just a small num-
ber of bits to represent. Also by [10], we can compute k bits

of x in time (k log(wX) log(wY) log(z))
O(1).

A similar statement holds for Gaussian random variables
replacing Cauchy random variables. In this case, the condi-
tional distribution Xj(Z = z) is itself a (shifted and scaled)
Gaussian, and the amounts of the shift and scale are ra-
tional functions of wX ; wY , and z. One can use standard
techniques for sampling from a Gaussian of given parame-
ters.

We will use this lemma with wX and wY at most poly-
nomial in N , so log(wX) and log(wY) are small. As in [10],
with high probability, log(z) is small. Finally, a small num-
ber k of bits of precision su�ces for our computation.

Lemma 2 (Naor and Reingold [14]). Call a set S �
[0; N) range-summable if it has compact description from
which, for each interval J, we can quickly compute jS \ J j.
For each range-summable S, we can construct a sequence
V of pseudorandom p-stably distributed random variables ri
such that (i) the construction requires small space and (ii)
given interval I, we can quickly compute the range sum of
the variables in S, i.e.,

P
i2S\I ri.

Proof. The central idea of the lemma is to compute
dyadic range sums in a tree and to use a pseudorandom
generator for the underlying randomness. For example, sup-
pose S = [0; N), N = 4, and the four random variables are
A;B;C, and D. First generate A+B+C+D, then generate
(A + B)j(A + B + C + D), noting that A + B and C + D
are Cauchy or Gaussian random variables, so the sums sat-
isfy Lemma 1. This determines C + D. Finally, generate
Aj(A+B) and Cj(C +D), thereby determining B and D.
We �rst give an ideal algorithm that uses too much space;

we then show how to reduce the space using Nisan's gener-
ator. Speci�cally, we will store a tree S of p-stable random
variable outcomes (with widths of our choosing|not neces-
sarily unit widths) that, ultimately, can be generated by the
generator. We give the proof for Cauchy random variables.
We construct dyadic range sums of A in a tree, in depth-

�rst search order. That is, we �rst compute jSj, then gener-

ate and store an outcome for r
log(N)
0 =

P
i2S ri � C(0; jSj).

Next, we compute jS \ [0; N=2)j and generate and store an

outcome for r
log(N)�1
0 =

P
i2[0;N=2)\S ri, from the distribu-

tion conditioned on the previously-stored value for
P

i2S ri,

using Lemma 1. These two values determine r
log(N)�1
1 =

P
i2[N=2;N)\S ri (without further randomness). Continuin-

ing this way, we store outcomes for rkj , for 0 � k � log(N)

and 0 � j < N=2k, with rkj = rk�1
2j + rk�1

2j+1.
Given dyadic interval I, we can recover

P
i2S\I ri from

S by descending the tree, and using a telescopic chain of
conditional probabilities. For an arbitrary I (not necessarily
dyadic), partition I into dyadic intervals and proceed. We
omit the simple details due to paucity of space.
Finally, instead of storing the outcomes in S as above, we

use Nisan's generator secure against small-space tests. We
then need to verify that our algorithm can be regarded as
a small-space test of the randomness. That is, one needs to
verify that our overall algorithm, which has oneway access
to the data and twoway access to its source of randomness,
could instead be implemented in small space given oneway
access to the randomness and twoway access to the data, i.e.,
the function computed by our algorithm can also be com-
puted by an algorithm of the form fooled by Nisan's genera-
tor. Since the two implementations always compute exactly
the same output, and since, with high probability, the latter
implementation produces the same output on true random-
ness as on pseudorandomness, the pseudorandom generator
su�ces. We omit the details of the simulation.

The above is useful even for the degenerate case of S =
[0; N), as we see next. We give a data structure that sup-
ports Update, Norm Estimation, and Parameter Estimation.
After that, we will use a non-trivial S to support Identi�ca-
tion as well.

Lemma 3. There exists a synopsis data structure that sup-
ports the following array sketch operations: Update, Norm
Estimation, and Parameter Estimation.

Proof. De�ne the synopsis data structure for A as mul-
tiple independent copies of hV;Ai, where V is a p-stable
distribution. Update support follows by construction. (Ob-
serve that, by linearity of the dot product, we just need the
sketch c hV; �Ii of c�I , a range sum, to add to an existing
sketch of a signal.) Norm Estimation support is from [10].
We turn now to Parameter Estimation.
Let h = h(A) = BA, where B is a projection matrix.

By Lemma 2 with S = [0; N), we can quickly compute B�I ,
and thus also h0(c) = B(A�c�I), carried to any small num-
ber of bits of precision, which su�ces. In the following we
show how to �nd cminimizing median(jh0(c)1j; : : : ; jh0(c)dj);
where h0(c)j is the j'th independent copy of a basic sketch.
As in [10], this implies the lemma. To this end, observe that
h0(c) is a linear function of c. Therefore, we need to solve
the following optimization program:

min
0�c�R

medianfja1c+ b1j; : : : ; jadc+ bdjg

This problem can be trivially solved in O(d3) time as follows.
Firstly, we compute all points c such that jaiy+ bij = jajc+
bj j, for i 6= j; there are at most d2 such points. These
points split the range [0; : : : ; R] into at most d2+1 intervals
i1 : : : it. Observe that if we restrict c to any ij = [lj ; rj],
the problem amounts to �nding the median of the values
min(jailj + bij; jairj + bij), for i = 1 : : : d, which can be done
in O(d) time. Therefore, the problem can be solved in O(d3)
time by enumerating all intervals ij .

392

Once we have found c optimizing kA� c�Iks, observe
that this su�ces, since

kA� c�Iks �
A� cIopt�I

s
� (1 + �s)

A� cIopt�I :
The Gaussian/`2 case is actually easier. By [10], we need

to �nd c minimizing
P

j(ajc + bj)
2, a univariate quadratic

in c.

We now turn to identi�cation. First suppose there is a
single overwhelmingly large interval to �nd. Let Hj = fi :
bit j of the binary expansion of i is 1g (the j'th \bit test"),
to be used in Lemmas 4 and 6.

Lemma 4. Fix j. There is a synopsis data structure for
A that supports update and supports �nding the (single)
dyadic interval I of length 2j with k�(A; I)k � (2=3) kAk,
if there is such an I.

Proof. We show the lemma for j = 0; other cases are
similar.
For 0 � j < logN , use the norm estimation data structure

of Lemma 3 on the projected signals �(A; Hj). Also use the
norm estimation data structure on A itself.
We �nd the position of interval I (of length 1 in this ex-

ample) bit by bit. To �nd the most signi�cant bit, com-
pare

�(A;Hlog(N)�1)
 with kAk. If

�(A;Hlog(N)�1)

s
>

(1=2) kAks for reasonably good estimates, then�(A;Hlog(N)�1)
 > (1=3) kAk ;

and we conclude I � Hlog(N)�1 =
�
0; N

2

�
; otherwise, I ��

N
2
; N

�
. In general, the j'th test yields the j'th bit of the

position of I.

The lemma above gives us an oracle to �nd a (dyadic)
interval of large energy. Now we show how to reduce the
general case (no overwhelmingly large interval) to the above
case. This contains the elements of \group testing."

Lemma 5. Let N be a power of 2 and let Y be a �eld
of characteristic 2, jY j small. Fix j � log(N). There's a
function fs : [0; N) ! Y , parametrized by a short random
seed s, such that

� fs is constant on dyadic ranges of length 2j .

� fs is a uniform pairwise independent mapping on the
set of dyadic ranges of length 2j .

� Given interval I � [0; N), Hj, and y 2 Y we can
quickly compute jfi 2 I \Hj : fs(i) = ygj.

Proof. We illustrate the statement for j = 0. Other
cases are similar.
Let H be the extended Hamming matrix of length N ,

gotten by adding a row of 1's to the collection of all columns
of height log(N), in order. Let s be a vector of length
log(N) + 1 over Y , and let fs(i) be the i'th element of the
vector-matrix product sH over Y . The claimed properties
are straightforward to check. (See, e.g., [3].)

De�nition 3. Fix a signal, A. Pre-Identi�cation on A
with parameter � consists of �nding a compact list that con-
tains all dyadic intervals I for which k�(A; I)k � � kAk.

Lemma 6. We can construct a synopsis structure sup-
porting updates and Pre-Identi�cation with parameter �.

Proof. We show the lemma for (dyadic) intervals of length
1; the other log(N) cases are similar.
Let Y be a �eld of characteristic 2 and size �(1=�). Pick

seed s 2 Y log(N)+1 at random and �x y 2 Y . Let S =
fi : fs(i) = yg. We show that, with high probability, if
S contains a position i with k�(A; fig)k � � kAk, then
k�(�(A; S); fig)k = k�(A; fig)k � (2=3) k�(A; S)k.
To see this, observe that, by pairwise independence and

linearity of expectation, for each i,

E
�
k�(A; S n fig)k

��i 2 S�
= E [k�(A; S n fig)k] � E [k�(A; S)k] = (�=8) kAk

if jY j = �(1=�) is large enough. Thus, with probability at
least 3=4,

E
�
k�(A; S n fig)k

��i 2 S� � (�=2) kAk :

Since k�(A; fig)k � � kAk, it follows that �(A; S) has a
single position with 2=3 the total energy, if it contains any
position of energy at least � kAk.
For each seed s, the y 2 Y induce a partition of [0; N);

namely, [0; N) =
S
yfi : fs(i) = yg. Thus, for each position

i with an � fraction of the signal energy, there is some y,
namely, y = fs(i), such that i 2 fi : fs(i) = yg. The posi-
tion i is identi�ed for this choice of y. We will exhaustively
consider the compact list of all y's, thereby pre-identifying
each �-signi�cant i with probability 3=4. By boosting the
probability of success from 3=4 to 1��=4 through repetition
and taking the union of the lists, it follows that all intervals
are simultaneously isolated and pre-identi�ed this way.
Note that S \ Hj satis�es the properties of Lemma 2,

where S = fi : fs(i) = yg and Hj is a bit test of Lemma 4.
(Observe that fi : fs(i) = yg \Hj � [0; N) is equivalent to
a set of the form fi : fs0(i) = yg � [0; N=2), where the new
seed s0 is easy to compute from s.) It follows that there's
a data structure that supports Update and Norm Estima-
tion of �(A; S \Hj), whence support for Pre-Identi�cation
follows.

Theorem 7. We can construct a (�s; �; N)-array sketch
that uses small space and supports its operations in small
time.

Proof. By Lemma 3, it remains only to give a structure
that supports Update and Identi�cation.
The array sketch of a signal A is de�ned as follows. Pick

a random seed s. Let Y be a �nite �eld of characteristic
2 and approximately 1=�2 elements. For each y 2 Y and
each j < log(N), compute h�(A; fi : fs(i) = yg \Hj);Vi,
where V is a sequence of random variables, generated via
Naor-Reingold's tree construction [14] of conditional proba-
bilities, using Nisan's generator [15], for range summable
S = fi : fs(i) = yg \ Hj . For each y, also compute
h�(A; fi : fs(i) = yg;Vi, for V similarly generated for S =
fi : fs(i) = yg.
Support for update follows by construction. By Lemma 6,

we can �nd a compact list of intervals that includes all in-
tervals I with k�(A; I)k � � kAk. Observe that kAk �A� cIopt�I � k�(A; I)k, so the compact list of inter-

vals contains all I such that
A� cIopt�I � (1 � �) kAk;

393

it might also contain other I's such that
A� cIopt�I >

(1 � �=2) kAk. By Lemma 3, for each I on the list, we can
�nd a parameter c such that

A� cIopt�I � kA� c�Iks �
(1 + �s)

A� cIopt�I, thereby estimating
A� cIopt�I to

within ��s kAk. This and an estimate kAks for kAk are suf-
�cient to select a set of I's satisfying the desired properties,
provided �s � �=8.

3. EFFICIENT WAVELET APPROXIMATION
In this section, we give an algorithm that �nds a (1 + �)-

approximation to the best B-term wavelet representation
for the signal A, given only a sketch of A. We will use
the array sketch synopsis data structure from the previous
section. The results in this section motivate the discussion of
main result which will follow, but it may be of independent
interest as well. The results in this section will hold for `2
norm only. (Our main result in next section will work for
both `2 and `1).

De�nition 4. A (Haar) wavelet is a function on [0; N)
of one of the following forms, for integers j and k:

� 1p
N
�[0;N)

� 2�j=2
�
��[k2j�1;(k+1)2j�1) + �[(k+2)2j�1;(k+3)2j�1)

�
.

There areN wavelets altogether, and they form an orthonor-
mal basis, i.e., h ; 0i is 1 if = 0 and 0 otherwise. Let
 j denote the j'th wavelet basis vector.
Every signal can be reconstructed exactly from all its

wavelet coe�cients (its full wavelet transform, an orthonor-
mal linear transformation), as A =

P
j hA; ji j , whence

a formal linear combination of distinct wavelets is its own
wavelet transform.
Parseval's equality states that the L2 norm of a signal

is invariant under orthonormal change of basis:
P

iA
2
i =P

j hA; ji
2. The intuition behind our algorithm is that, by

Parseval's inequality, we simply want to �nd the biggest B
coe�cients. We cannot seek them directly, however, since
one of the biggest coe�cients may be small, and we can-
not try to identify all small coe�cients since there are too
many. Thus the algorithm proceeds greedily|after �nding
and subtracting the biggest wavelet term, the second biggest
becomes bigger relative to the residual signal, and, therefore,
easier to �nd.
In this section, we use essentially the Array Sketch data

structure of Section 2. First, we require De�nition 1 to hold
with respect to k�k22, which is more convenient than k�k12 in
this context. Note that Parameter Estimation is easily mod-
i�ed for wavelets|given A and , kA� d k2s is, by [10], a
univariate quadratic in d, which is easy to optimize. Pre-
Identi�cation (of dyadic intervals I with k�(A; I)k2 � � kAk2)
is unchanged, so the desired Identi�cation can be achieved
by performing Pre-Identi�cation and then su�ciently ac-
curate Parameter Estimation. We also require parameters
� = �

4B
, and �s = �2�=128 to be set di�erently than in

Section 2.
The algorithm is as follows:

Initially R = 0 and S = ; and sketch = sketch(A). Repeat

1. If A �R =
P

j d
0
j j then, using the sketch, �nd

compact � with
�
j : jd0j j

2 > � kA�Rk22
	
� �

and � �
�
j : jd0j j

2 > (1� �s)� kA�Rk
2
2

	
.

2. If � = ; or (jSj = B and S\� = ;) exit loop and
output R.

3. Using the sketch, for all j 2 � let ~dj estimate(j).

4. If jSj < B, then S S [fj0g where j0 is the

index with the largest value of j ~dj j.

5. For each j 2 S (which may have changed since
start of loop)

(a) R R+ ~dj j

(b) sketch sketch� ~dj � sketch(j)

De�ne dj and ~dj by A =
P

j dj j and R =
P

j2S ~dj j .

Lemma 8. An array sketch for wavelets can estimate any
coe�cient d of A as ~d with jd� ~dj2 � �s kAk

2.

Proof. Let be the basis function corresponding to co-
e�cient d. We have

jd� ~dj2 + kA� d k2 =
A� ~d

2 � (1 + �s) kA� d k
2 ;

whence jd� ~dj2 � �s kA� d k
2 � �s kAk

2.

Lemma 9. At termination of the above algorithm, for any
i 62 S and j 2 S, we have jdij

2 � (1 + �=2)jdj j
2.

Proof. Omitted. The central idea is that if otherwise,
we would have chosen i instead of j to include in S.

We will now show that the indices in S, with optimal
coe�cients, gives a good enough representation. Let R0 =P

j2S dj j , where dj = hA; ji are the exact coe�cients.

Lemma 10. If jSj < B then kA�R0k2 � kA�Roptk
2
2+

�
4
kA�Rk22.

Proof. Consider some i 62 S. Since jSj < B, we could
have added i but did not. Thus i 62 � when we decided to
output. Therefore d2i �

�
4B
kA�Rk22. Let Sopt be the set

of basis vectors in Ropt. Thus,X
i2SoptnS

d2i � jSopt � Sj
�

4B
kA�Rk22 �

�

4
kA�Rk22 :

Therefore,
A�R02

2
=
X
j 62S

d2j �
X

j 62Sopt
d2j +

X
j2SoptnS

d2j �

kA�Roptk
2
2 +

�

4
kA�Rk22.

Lemma 11. kA�R0k22 � (1+ �
2
) kA�Roptk

2
2+

�
2
kA�Rk22.

Proof. Once again, let Sopt be the set of basis vectors in
Ropt. If jSj < B then the previous lemma applies. In case
of jSj = B = jSoptj, every i 2 Sopt�S can be matched to an
index m(i) 2 S � Sopt. By Lemma 9, d2i � (1 + �=2)d2m(i),
and, summing over all such pairs,X

i2Sopt�S
d2i � (1 + �=2)

X
i2SnSopt

d2i :

By adding terms outside S [Sopt,
A�R02

2
=
X
i62S

d2i �

(1 + �=2)
X

i62Sopt
d2i = (1 + �=2) kA�Roptk

2
2.

394

We now show that the representation R that we produce,
whose coe�cients are indexed in S but are only approxima-
tions, is accurate enough.

Theorem 12. The above algorithm constructs a (1+O(�))-
approximation, kA�Rk22 � (1 +O(�)) kA�Roptk

2
2.

Proof. Let A � R =
P

j d̂j j . If j 62 S then d̂j = dj .

Since � \ S = ; at termination, for j 2 S, we have jd̂j j
2 �

�
4B
kA�Rk22. Therefore,

kA�Rk22 =
X
j

d̂2j =
X
j 62S

d2j +
X
j2S

d̂2j

�
X
j 62S

d2j +B
�

4B
kA�Rk22

�
A�R02

2
+
�

4
kA�Rk22

� (1 + �=2) kA�Roptk
2
2 +

3�

4
kA�Rk22 ;

using Lemma 11 in the last step.

We are almost done except we need to prove that the
above algorithm terminates in few steps,

Lemma 13. The above algorithm terminates in at most
O(B log(N kAk)= log(1=�)) steps.

Proof. Omitted. Each time we update one of only B
coe�cients, its square error drops by the factor �s

�
= O(�),

from an initial value bounded by kAk. The minimum posi-
tive square error is
(1=N).

AnyB-bucket histogram can be regarded as a wavelet rep-
resentation with O(B log(N)) terms and any B-term wavelet
representation can be regarded as a histogram with O(B)
buckets. Thus we also immediately have a result for his-
tograms with O(log(N)) blowup in the number of buckets:

Theorem 14. The best O(B log(N))-term wavelet repre-
sentation R, found e�ciently by the above algorithm, is a
O(B log(N))-bucket histogram with error at most (1 + �)
times that of the best B-bucket histogram.

4. FINDING A ROBUST APPROXIMATION
In this section, we de�ne and show how to �nd a robust ap-

proximation Hr to A with poly(B; log(N); 1
�
) buckets. We

will use the synopsis data structures from Section 2. As men-
tioned before, intuitively, a robust approximation captures
almost as much information as is contained in a B-bucket
approximation of the signal. The formal de�nition is:

De�nition 5. Given a signalA, a histogramHr is a (Br; �r)-
robust approximation to A if, given any collection X of
jXj � Br non-overlapping intervals, any histogram H which
can be expressed as

H =

�
Hr on [0; N)�

S
I2X I

cI�I on I 2 X

would satisfy (1� �r) kA�Hrk � kA�Hk.

That is, a robust histogram is not improved much if it is
re�ned by a small number of additional buckets. Note that
jXj � Br is small, but

S
I2X I can be large, even equal

to [0; N). Throughout this section we will use the term
robust to denote (Br; �r)-robust. We will eventually apply
the theorems with Br = B and �r = O(�=B). Before we
start, the following straightforward property of `1 norm

2

Lemma 15 (Decomposability). IfH = H0 everywhere
except on a non-overlapping set of intervals X, then

kA�Hk �
A�H0

=
X
I2X

�
k�(A�H; I)k �

�(A�H0; I)
� :

We show that if H is not a robust approximation to A,
it can be improved. This part is similar to the wavelet con-
struction proof we saw in the previous section; here we im-
prove the robust histogram by identifying and subtracting
o� a set of large coe�cients repeatedly. First, we show that
this improvement is possible; afterwards, we'll show how to
perform the improvement e�ciently.

Lemma 16. Given a histogram H which is not robust,
there exists a dyadic interval I and a parameter c such that
a histogram H0 which agrees with H everywhere except I,
and takes the value c on I, approximates A better than H
by a factor 1� �r=(4Br logN).

Proof. (sketch) SinceH is not robust, De�nition 5 guar-
antees a set X of intervals that improves H. Let XD be a
similar set of at most Br log(N) dyadic intervals. Some in-
terval in XD gives at least the average improvement.

We can construct a robust approximation greedily. Using
the Identi�cation operation of an array sketch, we can �nd a
dyadic interval I such that re�ningH by I and changing the
value only on I to copt, getting H

copt
I , gives

A�Hcopt
I

 �
(1� �r=(4Br logN)) kA�Hk. Furthermore, using Parame-
ter Estimation, we can �nd a parameter c with kA�Hc

Ik �
(1 � �r=(8Br logN)) kA�Hk. Call this process one round
of improvement; each round of improvement is quick. For an
integer-valued signal, one easily sees that if a histogram H
has error less than �(1), then it can trivially and e�ciently
be improved to have error zero by changing spline param-
eters only. Thus, starting from H = 0 (i.e., kA�Hk =
kAk), by attempting to performR � O(Br log(N) log kAk =�r)
rounds of improvement on H, either no improvement is pos-
sible beyond some round R0 < R (in which case H at that
point is robust by Lemma 16), or, after round R, we have
kA�Hk � �(1), so, by changing spline parameters in H,
we get H0 = A, which is robust.

Lemma 17. Given �r and Br, in time t we can �nd a
(Br; �r)-robust histogram Hr of O((Br=�r) log(N) log kAk)
buckets from an (�s; �)-array sketch for A, where t; �s; � are
in poly(Br;

1
�r
; logN; log kAk).

In particular, consider re�ning Hr by the optimal his-
togram Hopt with B � Br buckets (so that none of Hr

remains). It follows that

Lemma 18. Let Hr be a (B; �r) robust approximation to
A and let Hopt be an optimal B-bucket representation. Then
kA�Hrk � kA�Hoptk =(1� �r).

2Similar intermediate statements hold for `2 norm or its
square, as appropriate, so our main result will hold for `2.

395

5. A (1+�)-APPROXIMATION HISTOGRAM
CONSTRUCTION

Before we present the approximation algorithm, we recall
an optimal dynamic program for histogram construction,
which uses O(BN) space and O(N2B) time. Inductively,
for each k < B, the algorithm stores, for each x 2 [0; N),
the best histogram with k buckets which approximates the
signal on the interval [0; x). Using this, it constructs the best
(k + 1)-bucket approximation for each x 2 [0; N). The best
(k + 1)-bucket histogram extends some k-bucket histogram
on [0; x0). By optimality, this k-bucket histogram has to be
also the best possible k-bucket histogram for [0; x0). Since
the algorithm is allowed O(BN) space it can store the signal
and appropriate pre�x sums to compute the best value to
attribute to a bucket.
Intuitively, the dynamic program constructs best approx-

imation of subintervals and tries to extend them. In that
sense, for a �xed k, we call

fbest k-bucket histogram on [0; x)j0 � x < Ng

a k-extension-basis (briey, a k-basis) since it consists of k-
bucket histograms and supports constructing the best (k +
1)-bucket histogram on [0; N) for any x by extending one of
the stored histograms. Although not explicitly stated, this
idea of constructing an extension basis was considered in [9],
but for a weaker non-dynamic model.
We will proceed along similar lines. But this similarity will

be restricted to the high level of constructing an Extension
Basis and performing extensions to any [0; x). Since we are
allowed poly(logN; 1

�
; B) space our extension basis size has

to be small|we'll construct

fbest k-bucket histogram on [0; xi)ji = 0; 1; : : : ; `g

for ` � poly(logN; 1
�
; B), and show that we can still (ap-

proximately) construct a (k + 1)-basis from a k-basis. Fur-
thermore, assigning the best spline parameter to an interval
is approximate (through sketches). Finally, the dynamic
programming algorithm recalled above, if implemented nat-
urally, needs to evaluate k�(A�H; I)k. As we discuss be-
low, we cannot even estimate this quantity directly from
sketches. We can only estimate the norm of A or A � H
on the entire interval [0; N); there are too many intervals to
store sketches on each in order to estimate norms on each.
Instead of approximating �(A; [0; x)) by a histogram H, we
approximate A by a histogram H0 that equals H on [0; x)
and equals Hr on [x;N)|this is where we use Hr. Thus
we estimate kA�H0k instead of k�(A�H; [0; x)k, and use
only sketches on all [0; N).
In Subsection 5.1, we de�ne and show how to use (recur-

sively) an extension basis for signal A, given just an array
sketch representation for A (from which we can also build
a robust approximation to A). In Subsection 5.2, we in-
stantiate parameters of the extension basis and show that
the histogram ultimately produced has small enough error.
Finally, in Subsection 5.3, we show how to build a suitable
extension basis quickly (in particular, the extension basis we
build is small).

5.1 The Extension Basis and Recursive Exten-
sion

De�nition 6. A collection of histograms-interval pairs f(Hk
i ; Ii)g

is a �-separated k-basis of size `, with error parameters �k

and E(k), if the following holds.

1. ; = I0 � [0; 1) = I1 � � � � � I` = [0; N) and 0 2 Ii for
all i � 1. (That is, the Ii's are a sequence of nested
pre�xes increasing from ; to [0; N).)

2. Each Hk
i is a k-bucket histogram on Ii and is equal to

Hr on I` � Ii.

3.
A�Hk

i

 � A�Hk
i�1

 + � if Ii extends Ii�1 by
more than one element, jIij > jIi�1j+ 1.

4. Error Property: Each Hk
i is a good k-bucket ap-

proximation forA amongst all histogramsH that have
k buckets in Ii, and agree withHr on I`�Ii. Formally,A�Hk

i

 � (1 + �k) kA�Hk+E(k).

The reason we call the above a k-extension basis is imme-
diate from the following construction procedure for a nearly
optimal histogram Hsol that approximatesA on the interval
[0; x) while using at most k+1 buckets in [0; x). In fact it is
immediate that if we could generate such an approximation,
we could generate a �-separated (k + 1)-basis by iterat-
ing through the values of x and retaining the necessary his-
tograms. Of course, iterating through [0; N) is prohibitive;
we will show how to construct an extension basis e�ciently,
but �rst we need to give a construction process that pre-
serves the Error Property for Hsol with a small error
E(k + 1). But recall that we can only compare histograms
that are de�ned on the entire domain [0; N). Consider the
following construction procedure.

De�nition 7. Given a k-extension basis f(Hk
i ; Ii)g and an

interval I = [0; x), the following extension procedure �nds a
(k + 1)-bucket histogram on I.

1. For each i � `

(a) Consider extending Hk
i to Hi by adding a bucket

I � Ii.

(b) Hi agrees withH
k
i on Ii, has the value ci on I�Ii

and agrees with Hr on [0; N)� I.

(c) ci is chosen such that kA�Hik is minimized over
all choices of ci.

2. Pick j minimizing kA�Hjk over all choices j � `
(kA�Hjk � kA�Hik for any i).

3. Set Hsol = Hj .

Lemma 19. If H� is a histogram with at most k+1 buck-
ets intersecting the interval I and H� agrees with robust his-
togram Hr on I`� I, and if Hsol is produced by De�nition 7
from a �-separated k basis with error parameters �k and
E(k), then

kA�Hsolk

� (1 + �k) kA�H
�k +E(k) + �+ (1 + �k)�r kA�Hrk :

Proof. Omitted.

In De�nition 7, we used kA�Hik. Using a sketch of A,
however, we only have access to kA�Hiks. We now modify
Lemma 19 to use the norm approximation.

De�nition 8. Given a k-extension basis f(Hk
i ; Ii)g and an

interval I = [0; x), the sketched extension procedure �nds a
(k + 1)-bucket histogram on I by using De�nition 7 except
by evaluating k�ks from a sketch instead of k�k.

396

Lemma 20. If H� is a histogram with at most k+1 buck-
ets intersecting the interval I and H� agrees with robust his-
togram Hr on I`� I, and if Hsol is produced by De�nition 8
from a �-separated k basis with error parameters �k and
E(k), then

kA�Hsolk � (1 + �s)

�
(1 + �k) kA�H

�k+E(k)

+�+ (1 + �k)�r kA�Hrk

�
:

Proof. De�ne Hs
i to agree with Hk

i on Ii, to have the
value csi on I n Ii, and to agree with Hr on [0; N) n I, where
csi chosen to minimize kA�Hs

iks. De�ne Hj to agree with

Hk
j on Ij , to have value cj on I n Ij , and to agree with

Hr on [0; N) n I, where cj chosen to minimize kA�Hjk.
Finally, suppose i is chosen to mimimize kA�Hs

iks, and
put Hsol = Hs

i . Then

kA�Hsolk = kA�Hs
ik � kA�H

s
i ks

�
A�Hs

j

s
� kA�Hjks

� (1 + �s) kA�Hjk :

The lemma follows.

5.2 The Final Approximation Guarantee
In this subsection, we instantiate � and the error param-

eters �k and E(k).

Lemma 21. Given a signal A, distortion �, and desired
number B of buckets, let jOPT j = kA�Hoptk, where Hopt

is the best B-bucket histogram. Put �s = �=(4B); �r = �=B,
and Br = B. Put � = �jOPT j=B, put E(1) = 0 and E(k+

1) = (1 + �s)
h
E(k) + �+ 2�r jOPT j

1��r

i
, and put (1 + �k) =

(1 + �s)
k. Then

1. If we use De�nition 8 on a �-separated k-basis with
error parameters �k and E(k), we get a �-separated
(k+1)-basis with error parameters �k+1 and E(k+1).

2. If we use De�nition 8 on a (B�1)-basis to produce a B-
bucket histogram Hsol on [0; N), we get kA�Hsolk �
(1 +O(�))jOPT j.

Proof. From Lemma 20 and the de�nition of (k + 1)-
basis, for the �rst statement, we need to show that

(1 + �k+1) kA�H
�k+E(k + 1)

� (1 + �s)

�
(1 + �k) kA�H

�k

+E(k) + �+ (1 + �k)�r kA�Hrk

�
:

By de�ntion of E(k + 1),

E(k + 1) = (1 + �s)

�
E(k) + �+

2�rjOPT j

1� �r

�
� (1 + �s)

�
E(k) + �+

(1 + �k)�rjOPT j

1� �r

�
:

By Lemma 18, jOPT j
1��r � kA�Hrk, so

E(k + 1) � (1 + �s) [E(k) + �+ (1 + �k)�r kA�Hrk] :

Since (1+ �k+1) kA�H
�k � (1+ �s)(1+ �k) kA�H

�k, the
�rst statement follows.
As for the second statement, observe that

E(B) =
BX
i=1

(1 + �s)
i

�
�+

2�rjOPT j

1� �r

�
� O(�)jOPT j

and (1 + �B) = (1 +O(�)). It follows that

kA�Hsolk � (1 + �B)jOPT j+E(B)

� (1 +O(�))jOPT j:

5.3 The Construction of a Small Extension Ba-
sis

We will now show how to construct a small extension basis
with parameters �; �k, and E(k) as above; that is, a basis of
size ` � poly(B; logN; 1

�
). First let us assume that we know

jOPT j up to a factor between 1 and 1 + �, by exhaustively
trying powers of (1 + �) from �(1) to (an upper bound for)
kAk as candidates for jOPT j. Recall that a � = 0-separated
extension basis can have N elements, which is prohibitively
large, so we non-trivially use the fact that � = �jOPT j=B.

De�nition 9. A small basis construction procedure for �xed
k < B is the following.

1. I0 = ; and I1 = [0; 1).

2. If
A�Hk

i

s
� 1:5(1 + �s)jOPT j, then put [0; x) into

the basis for all x 2 [xi; N), and halt.

3. Let bH(x) be the extension basis element we would gen-
erate for interval I = [0; x). After constructing Hk

i ,
we consider the possibility of Ii+1 = [0; xi + 1). Three
cases can happen.

(a) If
A� bH(xi + 1)

s
�
A�Hk

i

s
+�

2
, set xi+1 =

xi + 1.

(b) If
A� bH(N)

s
�

A�Hk
i

s
+ �

2
, then set

xi+1 = N .

(c) Otherwise, perform a bisection search on [xi +
1; N), and set xi+1 = x and xi+2 = x + 1, and

set Hk
i+1 = bH(x) and Hk

i+2 = bH(x+ 1), where x
satis�esA� bH(x)

s
�
A�Hk

i

s
+

�

2

and A� bH(x+ 1)

s
�
A�Hk

i

s
+
�

2
:

4. Repeat for i up to `.

Let B denote the resulting basis. Let B0 denote(
(Ii;H

k
i) 2 B

����� A�Hk
i

s
� 1:5(1 + �s)jOPT j

)
:

Lemma 22. We have:

1. De�nition 9 produces a �-separated k-basis B.

397

2. The best B-bucket histogram on [0; N) produced from
a recursively-built B0 is the same as the best produced
from a recursively-built B.

3. B0 can be produced quickly (by a natural modi�cation
of the procedure in De�nition 9).

Proof. First consider the �-separtion property.
Observe that since [xi+1; xi+2) is an interval of length

1, we have nothing to prove about xi+2. Similarly, we
may assume that

A�Hk
i

s
< 1:5jOPT j, since otherwise

[xi; xi+1) is an interval of length 1. Now,A�Hk
i+1

 �
A�Hk

i+1

s

�
A�Hk

i

s
+

�

2

� (1 + �s)
A�Hk

i

+ �

2
:

Since
A�Hk

i

s
< 1:5(1+�s)jOPT j, it follows that

A�Hk
i

 <
2jOPT j, and

�s

A�Hk
i

 � 2�sjOPT j � 2
�

4B

B�

�
�

�

2
;

whence A�Hk
i+1

 � A�Hk
i

+�:

This proves the �rst statement.
Now consider second statement. We need to show that

discarding someHk
i 's do not change theB-bucket histograms

produced. SupposeHk
i 2 BnB

0 for some k. Then
A�Hk

i

 �
1:5jOPT j. Such a Hk

i and its extensions will never be useful
for a 1+ � approximation for � < 0:5; that is, i will never be
the minimum j at Step 2 in De�nition 8. All other Hk

i 's are
retained by De�nition 9.
Finally, consider the size of B0. For every two elements we

add to B, the error goes up by �
2
at least. Thus we cannot

have ` > 2 � (2jOPT j)=�
2
elements in B0, since, otherwise,A�Hk

`

 would be more than 2jOPT j. Thus the size of B0

will be at most O(B=�). One can construct B0 directly by
using De�nition 9 but halting at Step 2 without including
any additional intervals into the basis.

5.4 Summary

Theorem 23. Fix �, B, and N . Consider a signal A
of length N de�ned implicitly by updates of the form \add
a to Ai," where a can be a positive or negative integer.
There is a data structure that supports updates and pro-
duction, on demand, with high probability over the algo-
rithms random choices, of a B-bucket histogram H such that
kA�Hk � (1 + �) kA�Hoptk, where Hopt is the best pos-
sible B-bucket histogram under `1 or `2 error k�k. The data
structure requires space poly(B log(N) log(kAk)=�) and time
poly(B log(N) log(kAk)=�) for each of its operations.

Proof. Process updates into an array sketch. Use the
array sketch to produce a robust approximation Hr to A.
Use Hr and the array sketch to produce a k-extension basis,
for k = 0; : : : ; B � 1. Use the (B � 1)-extension basis to
produce a near-optimal histogram representation for A on
[0; N).

Acknowledgment
We are very grateful to Moni Naor and Omer Reingold for
providing a general construction for Lemma 2 and for gener-
ously allowing us to include our variant of the construction
here. Although published results [6] give a construction for
Bernoulli random variables (that can substitute for Gaus-
sian random variables, leading to our result under `2 error),
Naor-Reingold is much more elegent than other construc-
tions. Furthermore, theirs is the only known construction
for Cauchy random variables, which is needed for our result
under `1 error.

6. REFERENCES
[1] A. Aboulnaga, S. Chaudhuri. Self-tuning Histograms:

Building Histograms Without Looking at Data.
SIGMOD 1999, 181{192.

[2] N. Alon, Y. Matias, M. Szegedy. The Space
Complexity of Approximating the Frequency
Moments. JCSS 58(1): 137{147 (1999).

[3] J. Feigenbaum, S. Kannan, M. Strauss, M.
Viswanathan. An Approximate L1-Di�erence
Algorithm for Massive Data Streams. FOCS 1999,
501{511.

[4] P. B. Gibbons, Y. Matias. Synopsis Data Structures
for Massive Data Sets SODA 1999, 909{910.

[5] P. B. Gibbons, Y. Matias, V. Poosala. Fast
Incremental Maintenance of Approximate
Histograms. VLDB 1997, 466{475.

[6] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, M.
Strauss. Sur�ng Wavelets on Streams: One-Pass
Summaries for Approximate Aggregate Queries.
VLDB 2001, 79{88.

[7] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, M.
Strauss. QuickSAND: Quick Summary and Analysis
of Network Data DIMACS Technical Report 2001-43.

[8] S. Guha, N. Koudas. Approximating a Data Stream
for Querying and Estimation: Algorithms and
Performance Evaluation. ICDE 2002.

[9] S. Guha, N. Koudas, K. Shim. Data-streams and
histograms. STOC 2001, 471{475.

[10] P. Indyk. Stable Distributions, Pseudorandom
Generators, Embeddings and Data Stream
Computation. FOCS 2000, 189{197.

[11] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V.
Poosala, K. C. Sevcik, T. Suel. Optimal Histograms
with Quality Guarantees. VLDB 1998, 275{286.

[12] J.-H. Lee, D.-H. Kim, C.-W. Chung.
Multi-dimensional selectivity estimation using
compressed histogram information. SIGMOD 1999,
205{214.

[13] Y. Matias, J. S. Vitter, M. Wang. Dynamic
Maintenance of Wavelet-Based Histograms. VLDB
2000, 101{110.

[14] M. Naor, O. Reingold. Private communication,
March, 1999.

[15] N. Nisan Pseudorandom Generators for
Space-Bounded Computation. STOC 1990, 204{212.

[16] V. Poosala. Histograms for selecitivty estimation.
PhD Thesis, U. Wisconsin, Madison. 1997.

[17] N. Thaper, S. Guha, P. Indyk, N. Koudas. Dynamic
Multidimensional Histograms. SIGMOD 2002.

398

